Effects of Inhibitors on the Transcriptional Profiling of Gluconobater oxydans NL71 Genes after Biooxidation of Xylose into Xylonate

نویسندگان

  • Yuanyuan Miao
  • Yi Shen
  • Yong Xu
چکیده

D-Xylonic acid belongs to the top 30 biomass-based platform chemicals and represents a promising application of xylose. Until today, Gluconobacter oxydans NL71 is the most efficient microbe capable of fermenting xylose into xylonate. However, its growth is seriously inhibited when concentrated lignocellulosic hydrolysates are used as substrates due to the presence of various degraded compounds formed during biomass pretreatment. Three critical lignocellulosic inhibitors were thereby identified, i.e., formic acid, furfural, and 4-hydroxybenzaldehyde. As microbe fermentation is mostly regulated at the genome level, four groups of cell transcriptomes were obtained for a comparative investigation by RNA sequencing of a control sample with samples treated separately with the above-mentioned inhibitors. The digital gene expression profiles screened 572, 714 genes, and 408 DEGs was obtained by the comparisons among four transcriptomes. A number of genes related to the different functional groups showed characteristic expression patterns induced by three inhibitors, in which 19 genes were further tested and confirmed by qRT-PCR. We extrapolated many differentially expressed genes that could explain the cellular responses to the inhibitory effects. We provide results that enable the scientific community to better define the molecular processes involved in the microbes' responses to lignocellulosic inhibitors during the cellular biooxidation of xylose into xylonic acid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of Gluconobacter oxydans NL71, a Strain That Efficiently Biocatalyzes Xylose to Xylonic Acid at a High Concentration

Gluconobacter oxydans NL71, a selected strain in the crude lignocellulosic hydrolysate, catalyzed 600 g/liter xylose to 586.3 g/liter xylonic acid at 95.1% yield. The biocatalysis of xylose yielded three times higher than the best previous output, providing a possibility of the industrial scale utilization of lignocellulosic xylose. Due to its promising industrial applications, we sequenced the...

متن کامل

Metabolic Engineering of Escherichia coli for the Production of Xylonate

Xylonate is a valuable chemical for versatile applications. Although the chemical synthesis route and microbial conversion pathway were established decades ago, no commercial production of xylonate has been obtained so far. In this study, the industrially important microorganism Escherichia coli was engineered to produce xylonate from xylose. Through the coexpression of a xylose dehydrogenase (...

متن کامل

Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12.

The oxidative D-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on D-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g D-xylose(-1)) and a maximum growth rate of 0.21 h(-1). Remarkably, most of the genes...

متن کامل

Sequence Analysis and Phylogenetic Profiling of the Nonstructural (NS) Genes of H9N2 Influenza A Viruses Isolated in Iran during 1998-2007

The earliest evidences on circulation of Avian Influenza (AI) virus on the Iranian poultry farms date back to 1998. Great economic losses through dramatic drop in egg production and high mortality rates are characteristically attributed to H9N2 AI virus. In the present work non-structural (NS) genes of 10 Iranian H9N2 chicken AI viruses collected during 1998-2007 were fully sequenced and subjec...

متن کامل

I-34: Steroid Hormone Signalling at the FetomaternalInterface

Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017